pykanto.app.data
pykanto.app.data#
Code to generate embeddable data to be used in the interactive song labelling web application.
Functions
|
Save a base 64 png from a np.ndarray. |
|
Load saved data source to use in interactive labelling app. |
|
Prepare and save data source for the interactibe labelling application. |
|
Prepare and save data sources for the interactibe labelling application (parallel). |
- pykanto.app.data.embeddable_image(data: numpy.ndarray, invert: bool = False, background: int = 41) str [source]#
Save a base 64 png from a np.ndarray. Source: Leland McInnes, 2018.
- Parameters
data (np.ndarray) – Image to embed.
invert (bool, optional) – Whether to invert image. Defaults to True.
background (int, optional) – RGB grey value. Defaults to 41 (same as app).
- Returns
A decoded png image.
- Return type
str
- pykanto.app.data.prepare_datasource(dataset: KantoData, ID: str, spec_length: int = 500, song_level: bool = False) Tuple[str, Path] [source]#
Prepare and save data source for the interactibe labelling application.
- Parameters
dataset (KantoData) – Source dataset.
ID (str) – ID to process.
spec_length (int, optional) – Desired spectrogram lenght, in frames. Defaults to 500.
song_level (bool, optional) – Whether to use all units per vocalisation or their average. Defaults to False.
- Returns
A tuple with ID and path to saved data source.
- Return type
Tuple[str, Path]
- pykanto.app.data.prepare_datasource_parallel(dataset: KantoData, spec_length: float | None = None, song_level: bool = False, num_cpus: float | None = None) List[List[Tuple[str, Path]]] [source]#
Prepare and save data sources for the interactibe labelling application (parallel).
- Parameters
dataset (KantoData) – Source dataset.
spec_length (float | None, optional) – . Defaults to None.
song_level (bool, optional) – _description_. Defaults to False.
num_cpus (float | None, optional) – N cpus to use. Defaults to None.
dataset – Source dataset.
spec_length – Desired spectrogram lenght, in frames. Defaults to 500.
song_level – Whether to use all units per vocalisation or their average. Defaults to False.
num_cpus – N cpus to use. Defaults to None.
- Returns
- A list of lists of tuples
with ID and path to saved data source.
- Return type
List[List[Tuple[str, Path]]]
- pykanto.app.data.load_app_data(dataset: KantoData, datatype: str, ID: str) ColumnDataSource [source]#
Load saved data source to use in interactive labelling app.
- Parameters
dataset (KantoData) – Source dataset.
datatype (str) – Type of data to use (one of ‘voc_app_data’, ‘unit_app_data’)
ID (str) – ID to process.
- Returns
Data ready to plot.
- Return type
ColumnDataSource